
NASA Technical Memorandum 110274

A Bitvectors Library For PVS

Ricky W. Butler
Paul S. Miner

Langley Research Center, Hampton, Virginia

Mandayam K. Srivas

SRI International, Memlo Park, California

Dave A. Greve

Steven P. Miller

Rockwell Collins, Cedar Rapids, Iowa

August 1996

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

Contents

1 Introduction 3

2 Fundamental Definition of a Bitvector 3

3 Natural Number Interpretations of a Bitvector 4

4 Bitwise Logical Operations on Bitvectors 5

5 Bitvector Concatenation 6

6 Extraction Operator 7

7 Shift Operations on Bitvectors 8

8 Bitvector Rotation 8

9 Zero and Sign-Extend Operators 9

10 Theorems Involving Concatenation and Extraction 10

11 2's Complement Interpretations of a Bitvector 11

12 Bitvector Arithmetic 12

12.1 Definition of Arithmetic Operators 12

12.2 Arithmetic Properties of Shifting 13

12.3 Theorems about 2's Complement Arithmetic 14

13 Overflow 15

14 Library Organization 15

1 Introduction

The method used for specifying the parallel data lines of a hardware device is fundamental to

any hardware verification. These lines consist of an ordered set of O's and l's, usually called

bits. The ordered set of bits is referred to as a bitvector. Although a human reader of a

circuit design automatically "interprets" these bitvectors as natural numbers, 2's complement

integers, characters, or some other encoded object, a formal model must explicitly account

for these interpretations. For example, if bv is a bitvector, a function, say bv2nat, must be

applied to bv in order to convert it to a natural number, i.e. bv2nat (bv).

The bitvectors library has been developed for PVS [1, 2, 3, 4, 5, 6] with several goals in

mind:

All of the common functions that interpret and operate on bitvectors should be defined

in a manner that is simple and reusable.

The library should not introduce new axioms. In this way the library will be consistent

if PVS is consistent.

The library should provide a complete set of operators on bit-vectors that hide the

particular bitvector implementation used. Thus, if the definition of the bitvector type

were change from its current functional form to another form (e.g., a list form), the

interface to the user would remain the same.

The library should be organized in a manner that supports a variety of hardware,

without imposing a heavy overhead. In other words, specific parts of the library should

be accessible without being exposed to extraneous definitions.

• The library should facilitate the connection to different hardware design tools.

Similar libraries have been constructed for many other systems including the Boyer-Moore

theorem prover [7] and the Cambridge Higher Order Logic (HOL) system [8].

The bitvectors library is available via the World Wide Web at

http://atb-www.larc.nasa.gov/ftp/larc/PVS-library/

in the file bitvectors.chap.

2 Fundamental Definition of a Bitvector

There are several methods one could use to define a bitvector in PVS. Three reasonable

candidates are:

• a list of bits

• a finite sequence of bits

• a function from {0,1,2, ..,N- 1} into {0,1 }.

3

The third method has been used in this library. A bit is defined as:

bit : TYPE = {n: nat I n <= I}

and a bit-vector is defined as

bvec : TYPE = [below(N) -> bit]

Thus the type bvec is a function from below(N) to bit. The domain of the function is

specified using the type below which is predefined in the PVS prelude as:

below(i): TYPE = {s: nat I s < i}

The symbol N is a constant natural number representing the length of the bitvector. It is

imported into the basic theory using PVS's theory parameterization capability:

by [N: nal;]: THEORY

BEGIN

bit : TYPE = {n: nat I n <= i}

bvec : TYPE = [below(N) -> bit]

END by

This definition allows the use of empty bitvectors, which is primarily useful when using the

concatenation operators defined in a subsequent section.

A bitvector of length N is defined as follows:

bv: VAR bvec[N]

and the ith bit can be retrievedin two ways: bv(i) or bv'i. The lattermethod has the

advantage that it is implementation independent. The A operator is defined as follows:

^(by: bvec, (i: below(N))): bit = by(i)

3 Natural Number Interpretations of a Bitvector

A bitvector is interpreted as a natural number through use of a function named bv2nat.
This function is defined as follows:

bv_nat [N: nail : THEORY

BEGIN

IMPORTING bv[N], exp2

4

bv2nat_rec(n: upto(N), bv:bvec): KECURSIVE nat =

IF n = 0 THEN 0

ELSE exp2(n-1) * bv*(n-l) + bv2naZ_rec(n - 1, bv)

ENDIF

MEASURE n

bv2nat (bv:bvec) : below(exp2(N)) = bv2nat_rec(N, by)

where exp2 is the power of 2 function defined in the exp2 theory:

exp2(n: na_c): RECURSIVE posnat = IF n = 0 THEN I ELSE 2 * exp2(n - I) ENDIF

MEASURE n

The bv2nat function returns a natural number that is less than 2 N. Note that this fact is

contained in the type of the function a. The bv2nat function is defined in terms of a recursive

function bv2nat__rec. The function bv2nat__rec is equivalent to

n--1

bv2nat_rec(n, bv) = _ Tbv^i
i=0

Note that this definition designates that the 0th bit is the least significant bit and the N-1

bit is the most significant bit.

The bv2nat function is bijective (i.e. is a one-to-one correspondence):

bv2nat_bij : THEOREM bijective?(bv2na_)

and thus an inverse function nat2bv exists:

na_2bv(val :below(exp2(N))) : bvec = inverse(bv2nat) (val)

Thus, the following relationship exists between these functions:

bv2nat_inv : THEOREM bv2nat(nat2bv(val))= val

4 Bitwise Logical Operations on Bitvectors

The bitwise logical operations on bitvectors are defined in the bv bitwise theory as follows:

1The PVS system provides a powerful type theory that is heavily exploited in this library. We have

deliberately packed as much information as possible into the types of the functions. This provides two major

benefits: (1) The information is automatically available in proofs, and (2) many theorems can be stated
concisely, without explicit contraints.

i: VAR below(N)

OR(bvl,bv2: bvec[N]) : bvec = (LAMBDA i: bvl(i) OR bv2(i));

AND(bvl,bv2: bvec[N]): bvec = (LAMBDA i: bvl(i) AND bv2(i)) ;

IFF(bvl,bv2: bvec[N]): bvec = (LAMBDA i: bvl(i) IFF bv2(i)) ;

NOT(by: bvec[N]) : bvec = (LAMBDA i: NOT bv(i)) ;

XOR(bvl,bv2: bvec[N]): bvec = (LAMBDA i: XOR(bvl(i),bv2(i))) ;

Ifthe user wishes to avoid the use of the underlying bitvectorimplementation, the following

lemmas can be used rather than expanding these functions:

by, bvl, by2: VAR bvec[N]

by_OR : LEMMA (bvl OR bv2)'i = (bvl'i OR bv2-i)

by_AND : LEMMA (by1 AND bv2)^i = (bvl'i AND bv2"i)

bv_IFF : LEMMA (bvl IFF bv2)^i = (bvl"i IFF bv2Ai)

bv_XOR : LEMMA XOR(bvl,bv2)^i = XOR(bvlAi,bv2-i)

by_NOT : LEMMA (NOT bv)^i = NOT(by'i)

5 Bitvector Concatenation

The concatenation operator o on bitvectors is defined in the bv_concat theory as follows:

bv_concat In:nat, re:nat]: THEORY

BEGIN

o(bvn: bvec[n], bvm: bvec[m]): bvec[n+m] =

(LAMBDA (nm: below(n÷m)): IF nm< m THEN bvm(nm)

ELSE bvn(nm - m)

ENDIF)

The result of concatenating a bitvector of length n with a bitvector of length m is a new

bitvector of length n+m. The zero-length bitvector is the identity. The following theorems,

which establish that the triple (bvec, o, null_by) is a monoid, are proved in the theory
bv_concat_lems.

null_by: bvec[O] _ zero-length bit-vector

concaZ_iden_izy_r : LEMMA (FORALL (n: nat), (bvn:bvec[n]):

bvn o null_by = bvn)

concaZ_idenZity_l : LEMMA (FORALL (n: nat), (bvn:bvec[n]):

null_by o bvn = bvn)

concat_associative : LEMMA (FORALL (m,n,p: nat), (bvm:bvec[m]),

(bvn:bvec[n]), (bvp:bvec[p]):

(bvm o bvn) o bvp = bvm o (bvn o bvp))

The bv_concat_lems theory also provides a lemma not_over_concat

not_over_concat : LEMMA (FORALL (n: nat), (a,b: bvec[n]):

(NOT (a o b)) = (NOT a) o (NOT b))

that shows that NOT distributes over the o operator and a lemma bvconcat2nat that provides

the result of applying bv2nat to a concatenated bitvector:

bvn: VAR bvec[n]

bvm: VAR bvec[m]

nm: VAR below(n+m)

bvconcat2nat : THEOREM bv2naZ [n+m] (bvn o bvm)

= bv2nat[n] (bvn) * exp2(m) + bv2nat[m] (bvm)

6 Extraction Operator

The operator "(i ,j) extracts a contiguous fragment of a bitvector between two given posi-
tions.

"(by: bvec[N], sp:[il: below(N), upto(il)]): bvec[proj_l(sp)-proj_2(sp)+l] =

(LAMBDA (ii: below(proj_l(sp) - proj_2(sp) + I)):

bv(ii + proj_2(sp))) ;

Although the definition looks formidable, the behavior is quite simple. The first argument is

a bitvector of length N. The second argument designates the subfield that is to be extracted.

For example, suppose by = (t,u,v,w,x,y,z) with z as the least significant bit. Then,

by'(4,2) is the bitvector of length 3 that contains the bits 4, 3 and 2. In other words,

by'(4,2) = (v,w,x).

7 Shift Operations on Bitvectors

The left and shift operations on a bitvector are defined as follows:

right_shift(i: nat, bv: bvec[N]): bvec[N] =

IF i = 0 THEN by

ELSIF i < N THEN bvecO[i] o bv'(N-1, i)

ELSE bvecO[N] ENDIF

left_shift(i: nat, bv: bvec[N]): bvec[N] =

IF i = 0 THEN bv

ELSIF i < N THEN bv'(N-i-l, O) o bvecO[i]

ELSE bvecO[N] ENDIF

The right_shift operation shifts a bit vector by a given number of positions to the right,

filling O's in the shifted bits. The left_shift operation shifts a bit vector by a given number
of positions to the left, filling O's in the shifted bits.

8 Bitvector Rotation

The rotation operations on a bitvector are defined in the by_rotate theory as follows:

rotate_right(k: upto(N), bv: bvec[N]): bvec[N] =

IF (k = O) 0R (k = N) THEN by

ELSE bv'(k-l,0) o bv^(N-l, k) ENDIF

rotate_left(k: upto(N), bv: bvec[N]): bvec[N] =

IF (k=O) OR (k = N) THEN by

ELSE bv'(N-k-l, O) o bv^(N-I,N-k) ENDIF

The following lemmas relate the fields of the rotated bitvector with the original bitvector:

rotate_right_lem : LEMMA rotate_right(k,bv)^i =

IF i+k < N THEN bv-(i+k) ELSE bv'(i+k-N) ENDIF

rotate_left_lem : LEMMA rotate_left(k,bv)-i =

IF i-k >= 0 THEN bv'(i-k) ELSE bv^(N+i-k) ENDIF

The l-bitrotation functions are defined in terms of these as follows:

ro:_rl(bv: bvec [N]) : bvec [N] = rotate_right (I ,by)

rot_ll (by : bvec [N]) : bvec [N] = rotate_left (1,bv)

The rotate_right (I ,by) and rotate_left (I ,bv) functions can also be expressed in terms
of rot_rl and roZ_ll as follows:

iterate_rot_rl : LEMMA iterate(rot_rl,k)(bv) = rotate_right(k,bv)

iterate_rot_t1 : LEMMA iterate(rot_ll,k)(bv) = rotate_left(k,bv)

where iterate is defined in the PVS prelude as follows:

function_iterate[T: TYPE] : THEORY

BEGIN

f: VAR [T -> T]

m, n: VAR nat

x: VAR T

iterate(f, n)(x): RECURSIVE T =

IF n = 0 THEN x ELSE iterate(f, n-1)(f(x)) ENDIF

MEASURE n

END function_iterate

9 Zero and Sign-Extend Operators

The zero_extend operator expands a bit-vector of length N into a bitvector of length k filling .

the upper bits with zeros:

zero_extend(k: above(N)): [bvec[N] -> bvec[k]] =

(LAMBDA bv: bvec0[k-N] o by)

Thus, the natural number interpretation reinaJns the same:

zero_extend_lem : THEOREM bv2nat [k] (zero_extend(k) (by)) = bv2nat(bv)

The sign_extend operator returns a function that extends a bit vector to length k by

repeating the most significant bit of the given bit vector:

sign_extend(k: above(N)) : [bvec[N] -> bvec[k]] =

(LAMBDA by: IF by(N-l) = i THEN bvecl[k-N] o bv

ELSE bvec0[k-N] o by ENDIF)

The 2's complement interpretation remains the same:

sign_extend_lem : THEOREM bv2int [k] (sign_extend(k) (by)) = bv2int (by)

These higher-order functions are defined in the theory bv_extend.

The following useful theorem has been proved about the sign_extend function:

sign_to_zero : THEOREM sign_ex%end(k)(bv) =

IF bv(N-1) = i THEN NOT(zero_ex%end(k)(NOT(bv)))

ELSE zero_extend(k)(bv)

ENDIF

A function zero_ex%endlsend is also defined to return a function that extends a bit

vector to length k by padding O's at the least significant end of bvec. That is, the bv2nat

interpretation of the argument increases by :2(k-N).

zero_extend_isend(k: above(N)) : [bvec[N] -> bvec [k]] =

(LAMBDA bv: bv o bvecO[k-N])

zero_extend_Isend: THEOREM bv2nat(zero_ex%end_isend(k)(bv))

= bv2nat(bv) * exp2(k-N)

A higher-order function, lsb_extend, returns a function that extends a bit vector to length

k by repeating the least significant bit of the bit vector at its least significant end.

isb_exZend(k: above(N)): [bvec[N] -> bvec[k]] =

(LAMBDA by: IF bv'O = 0 THEN bv o bvecO[k-N]

ELSE by o bvecl[k-N] ENDIF)

The lemmas about the extend functions are proved in the theory bv_extend_lems.

10 Theorems Involving Concatenation and Extrac-
tion

The following properties of " and o are proved in the theory by_manipulations:

bvn: VAI{ bvec In]

bvm: VAR bvec [m]

caret_concat_boZ : THEOREM ± < m IMPLIES (bvn o bvm)'(i,j) = bvm'(i,j))

caret_concat_top : THEOREM i >= m AND j >= m IMPLIES

(bvn o bvm)'(i,j) = bvn'(i-m, j-m))

caret_concat_all : THEOREM i >= m AND j < m IMPLIES

(bvn o bvm)'(i,j) = bvn^(i-m,O) o bvm'(m-l,j))

bv_decomposition : THEOREM bvn'(n-l,k+l) o bvn'(k,O) = bvn

concat_bottom : THEDP_EM (bvn o bvm)^((m-1), 0) = bvm

concat_top : THEOREM (bvn o bvm)^((n+m-l), m) = bvn

I0

The first two theorems simplify formulas involving concatenation and extraction when the

part to be extracted is completely within one of the parts being joined together. The formula

caret_concat_zll moves an extraction within the concatenation. The last two theorems are

similar to the first two, except that the extraction involves the complete parts.

11 2's Complement Interpretations of a Bitvector

The 2% complement interpretation of a bitvector of length N enables the representation of

integers from -2 N-1 to 2 N-1 - 1. The basic definitions for 2's complement arithmetic are

defined in the bv ±nt theory.

Two constants are defined to represent the minimum and maximum values:

minint: in_ = -exp2(N-l)

maxint: inz = exp2(N-1) - 1

The range of values is defined as follows:

in_rng_2s_comp(i: int): bool = (minint <= i AND i <= maxint)

rng_2s_comp: TYPE = i: int] mininz <= i AND i <= maxinz

The Ts complement interpretation function_ bv2int_ isdefined as follows:

bv2int(bv: bvec): rng_2s_comp = IF bv2naZ(bv) < exp2(N-1) THEN bv2nat(bv)

ELSE bv2nat(bv) - exp2(N) ENDIF

The bv2int function can also be expressed as follows:

bv2int_lem : THEOREM bv2inz(bv) --bv2nat(bv) - exp2(N) * bv(N - I)

The bv2int function is bijective (i.e.is a one-to-one correspondence):

bv2inz_bij : THEOREM bijective?(bv2int)

and thus an inverse function int2bv exists:

int2bv(val :below(exp2(N))) : bvec = inverse(bv2int) (val)

The following relationship exists between these functions:

bv2int_inv : THEOREM bv2int(int2bv(iv))=iv;

The int2bv functions can also be translated into nat2bv as follows:

ii: VAR rng_2s_comp

int2bv_2nat: LEMMA inz2bv(ii) = IF ii >= 0 THEN nat2bv[N] (ii)

ELSE nat2bv IN] (ii+exp2(N)) ENDIF

ii

12 Bitvector Arithmetic

An important advantage of 2's complement arithmetic is that the + operation for the natural

number interpretation and the 2's complement interpretation is the same. Thus, the same

hardware can be used for both cases. This property and others is developed in the following
subsections.

12.1 Definition of Arithmetic Operators

Operations are defined to increment and decrement a bitvector by an integer in the theory

bv_arith_nat. This operations are overloaded on the + and - symbols:

+(by: bvec, i: int): bvec = nat2bv(mod(bv2nat(bv) + i, exp2(N))) ;

-(by: bvec,i: int): bvec = by + (-i) ;

The addition of two bit vectors isdefined as follows:

+(bvl: bvec, bv2: bvec): bvec =

IF bv2nat(bvl) + bv2nat(bv2) < exp2(N)

THEN nat2bv (bv2nat (bvl) + bv2nat (by2))

ELSE nat2bv(bv2nat (bvl) + bv2nat (by2) - exp2(N))

ENDIF ;

This definitionleads immediately to the followingtheorems:

by_add : LEMMA bv2nat(bvl + by2) =

IF bv2nat(bvl) + bv2nat(bv2) < exp2(N)

THEN bv2na¢(bvl) + bv2nat(bv2)

ELSE bv2nat(bvl) + bv2nat(bv2) - exp2(N) ENDIF

bv_addcomm : THEOREM bvl + by2 = by2 + by1

The firstlemma provides the natural number interpretationfor the + operation. The next

theorem shows that it is commutative. Other useful lemmas about bitvectoraddition are

alsoprovided:

k,kl,k2: VAR int

bv_add_two_consts: THEOREM (bvl + kl) + (by2 + k2) = (bvl + by2) + (kl + k2)

bv_add_consZ_assoc: THEOREM bvl + (by2 + k) = (bvl + by2) + k

bv_add_2_consts: LEMMA (by + kl) + k2 = by + (kl+k2)

by_both_sides: THEOREM (bvl + by3 = by2 + by3) IFF bvl = by2

bv_add_assoc: THEOREM bvl + (by2 + by3) = (bvl + by2) + by3

12

The * is overloaded to represent the unsigned multiplication of two n-bit bvecs:

• (bvl : bvec [N] , by2 : bvec [N]) : bvec [2*N]

= nat2bv[2*N] (bv2nat(bvl) * bv2nat(bv2)) ;

This definition leads immediately to the following theorem, which provides the natural num-

ber interpretation for the * operation:

bv_mult : LEMMA bv2nat(bvl * by2) = bv2nat(bvl) * bv2na¢(bv2)

The carryout function is defined as follows:

carryout(bvl: bvec, by2: bvec, Cin: bvec[l]): bvec[l] =

(LAMBDA (bb: below(l)) :

bool2bit(bv2nat(bvl) + bv2nat(bv2) + bv2nat(Cin) >= exp2(N))) ;

The carryout function indicates when the + operation will exceed the capacity of the bitvec-

tor. Note that the carryout returns a bvec [I].

The inequalities over bitvectors are defined as follows:

< (bvl: bvec, bv2: bvec): bool ffibv2na_;(bvl) < bv2nat(bv2) ;

<=(bvl: bvec, bv2: bvec): bool = bv2nat(bvl) <= bv2naZ(bv2) ;

> (by1: bvec, bv2: bvec): bool = bv2naz(bvl) > bv2nat(bv2) ;

>=(bvl: bvec, by2: bvec): bool = bv2nat(bvl) >= bv2na_(bv2) ;

The following lemmas about the bitvector order relations are provided:

by_smallest : LEMMA (FDRALL by: by >= bvecO)

bv_greates¢ : LEMMA (FORALL by: by <= bvecl)

12.2 Arithmetic Properties of Shifting

The following theorems (available in bv_arith_extract) give the numeric_ properties of

left and right shifting:

ss: VAR below(N)

by: VAR bvec[N]

by_shift : THEOREM bv2nat(bv'(N-l,ss)) ffidiv(bv2nat(bv), exp2(ss))

by_bottom : THEDREM bv2nat(bv'(ss,O)) ffimod(bv2nat(bv),exp2(ss+l))

right_shift_lem: THEOREM bv2nat(right_shift(ss,bv)) = div(bv2na_(bv),exp2(ss))

left_shift_lem : THEOREM bv2nat(left_shift(ss,bv)) =

bv2nat(bv'(N-ss-l,O))*exp2(ss)

13

The bv_shift theorem establishes that the extraction of the upper bits is equivalent to

dividing by a power of 2 under the natural number interpretation 2. This theorem is closely

related to the right_shift_lem. The by_bottom theorem establishes that the extraction

of the lower bits is equivalent to a power of 2 mod operation under the natural number

interpretation.

The arithmetic right shift operator is defined in bv_arith_shift as follows:

arith_shift_right (k: upto (N), by: bvec [N]) : bvec [N]

= right_shift_with(k,fill [k_ (bv" (N-l)) ,by)

Note that it fills the upper k bits with the (N-1)st bit of the original bitvector. The following

theorem shows the 2's complement result of an arithmetic right shift:

k: VAR upto(N)

arith_shif__right_inZ : LEMMA bv2int (arith_shift_right (k,bv)) =

floor (bv2int (by)/exp2 (k))

12.3 Theorems about 2's Complement Arithmetic

The 2's complement negation of a bit vector is defined in by_arithmetic as follows:

-(by: bvec): bvec = int2bv(IF bv2int(bv) = minint THEN bv2int(bv)

ELSE -(bv2int(bv)) ENDIF) ;

The following property relates this operator to bv2int:

unaryminus : LEMMA bv2int(-bv) = IF bv2int(bv) = minint THEN bv2int(bv)

ELSE -(bv2int (by)) ENDIF

The subtraction of two bit vectors is defined (in by_arithmetic) using bitvector addition
as follows:

-(bvl, by2): bvec = (bvl + (-by2))

If the result is in the range of 2s complement integers, addition of two bit vectors is the same

as for a natural number interpretation:

intaddlem : THEOREM in_rng_2s_comp(bv2in_(bvl) + bv2int(bv2))

IMPLIES bv2int(bvl + by2) = bv2int(bvl) + bv2int(bv2)

This is the relationship that enables one to use the same hardware for natural number addition
as 2's complement addition.

The 2s complement of a bitvector is its l's complement + 1:

_os_compl : THEOREM -bv2int(bv) = bv2in_(NOT by) + I;

The l'scomplement of a bitvectorbv isthe bitwise NOT, i.e.NOT by.

2The div function over natural numbers is defined by div(n,m) : nat = floor(n/m)

14

13 Overflow

Arithmetic overflow occurs when the result of an operation cannot be represented within the

bitvector. The conditions for 2's complement overflow are define in the by_overflow theory:

overflow(bvl,bv2,b): bool = (bv2int(bvl) + bv2int(bv2) + b) > maxint[N]

OR (bv2int(bvl) + bv2int(bv2) + b) < minint[N]

The following theorem provides the relationships between the top bits of the operands and

the result when overflow occurs.

overflow_def : THEOREM overflow(bvl, by2, b) =

((bvl " (N - 1) = by2 " (N - 1))

AND (bvl " (N - I) /= (bvl + by2 + b) (N - i)))

The following theorems define the result of bitvector arithmetic when overflow occurs:

not_in_rng : THEOREM NOT in_rng_2s_comp(bv2int(bvl) + bv2int(bv2))

IMPLIES bv2int(bvl + by2) =

bv2nat(bvl) + bv2na_(bv2) - exp2(N)

not_in_rng_int: THEOREM NOT in_rng_2s_comp(bv2in_(bvl) + bv2int(bv2))

IMPLIES bv2int(bvl + by2) =

bv2inZ(bvl) + bv2int(bv2) + exp2(N) * bvl(N - I)

+ exp2(N) * bv2(N - I)

- exp2(N)

14 Library Organization

The top of the bitvectors library is located in the theory by_top. It imports the following
theories:

15

bv

bvnat

bv_int

by arithmet ic

bv_arith_nat

bv_arith_extract

bv extractors

bv_extractors_lems

bv_concat

bv_concat_lems

by_constants

bv_manipulations

bv_bitwise

bv_bitwise_lems

by_shift

bv_extend

bv_extend_lems

bv_fract

bv_overflow

provides basic definition of bitvector type bvec

interpretes bvec as a natural number

interpretes bvec as an integer

defines basic operators (i.e. + - >) over bitvectors

defines bitvector plus, etc

defines arithmetic over extractors

defines extractor operator " that

provides lemmas about " operator

defines concatenation operator o creates smaller bitvectors from larger
establishes that concat is a monoid

defines some useful bitvector constants

provides lemmas concerning " and o

defines bit-wise logical operations on bitvectors

provides lemmas about bit-wise logical operations

defines shift operations

provides zero and sign extend operations

provide lemmas about extend operations

defines fractional interpretation of a bitvector

relates overflow to top bits

A graphical display of the import chain is shown in figure 1.

References

[1] Owre, S.; Shankar, N.; and Rushby, J.M.: The PVS Specification Language (Beta

Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[2] Owre, S.; Shankar, N.; and Rushby, J. M.: User Guide for the PVS Specification and

Verification System (Beta Release). Computer Science Laboratory, SRI International,

Menlo Park, CA, Feb. 1993.

[3] Shankar, N.; Owre, S.; and Rushby, J. M.: The PVS Proof Checker: A Reference Manual

(Beta Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb.
1993.

[4] Owre, Sam; Rushby, John; ; Shankar, Natarajan; and yon Henke, Friedrich: Formal

Verification for Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE

Transactions on Software Engineering, vol. 21, no. 2, Feb. 1995, pp. 107-125.

[5] Shankar, Natarajan; Owre, Sam; and Rushby, John: PVS Tutorial. Computer Science

Laboratory, SRI International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial

Notes, Formal Methods Europe '93: Industrial-Strength Formal Methods, pages 357-406,

Odense, Denmark, April 1993.

[6] Butler, Ricky W.: An Elementary Tutorial on Formal Specification and Verification

Using PVS. NASA Technical Memorandum 108991, Sept. 1993.

16

I
bv_bi_ise I

[
bv_mt

I
[bv_extractors J

I bv_arithmetic

I
I bv-bitwiseJems I I bv-°vem°w I

by_shift

by exu'actors_lems]

I

I

,11
! by_extend lemsJ

bv_rotate

Figure 1: Importing Structure of Bitvectors Library

I
[by_f tact I

[7] Hunt, Jr., Warren A.: FM8501: A Verified Microprocessor. University of Texas at

Austin, Technical report, 1985. Technical Report ICSCA-CMP-47.

[8] Wong, W.: Modeling Bit Vectors in HOL: the word Library. In Higher Order Logic The-

orem Proving and its Applications: 6th International Workshop (HUG'93), Vancouver,

B.C., vol. 780 of Lecture Notes in Computer Science, pp. 371-381. Springer Verlag, 1994.

17

REPORT DOCUMENTATION PAGE Fo,_ Approved
OMB No. 0704-0188

Public re!_:ltting burOe_ for this ¢ollectto_ o1=ntormat,_n Is est,'llateo to average 1 hour per response, inclt_lm.g the lime Ior rewew,"_g ,'lstruct=ons. searcfting existing data sources.
gathenng anti maintaining 1he data nee_e(:l, and ¢oml_eting an(:lrewewing the collection of inlormalion. Send comments regarding this I::)utOe_est_mate or any other aspe¢'l ol _is
¢ollecbon of information, inctu0ing su_)est,_s for reducing this buraen, to Washington Hea0Quarters Serv_.es. Directorate for Information Operat=ons and Reports. 1215 Jefferson Daws
H_ghway.Suwte 1204. Arlington. VA 22202-4302. and to the Office ot Management an= Buclget. Paperwork Re(:lucllon Protect (0704-0188). washington. DC 20503.

1. AGENCY USE ONLY (Lure b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1996 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Bitvectors Library For PVS WU 505-64-10-13

6. AUTHOR(S)

Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve, and
Steven P. Miller

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-110274

11. SUPPLEMENTARY NOTES

Butler: Langley Research Center; Miner: Langley Research Center; Srivas: SRI International; Greve: Rockwell
Collins; and Miller: Rockwell Collins.

12a. DISTRIBUTION I AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maxz_num 200 words)

This paper describes a bitvectors library that has been developed for PVS. The library defines a bitvector as a
function from a subrange of the integers into {0,1 }. The library provides functions that interpret a bitvector as a

natural number, as a 2's complement number, as a vector of logical values and as a 2's complement fraction.
The library provides a concatenation operator and an extractor. Shift, extend and rotate operations are also,
defined. Fundamental properties of each of these operations have been proved in PVS.

14. SUBJECT TERMS

Hardware Verification,
Formal Verification.

17. SECU_IIY CLASSIFICATION

OF REPORT

Unclassified

Bitvectors, Formal Methods, and

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

18
16. PRICE CODE

A03
20. UMITATION OF ABSTRACT

Stondlrd Form 298 (Rev. 2-89)
Prescnoeo by ANSI SIo Z39-lB
296102

